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Abstract

The problem to determine the effective elastic moduli and velocities of elastic wave propagation in transversely iso-
tropic solid containing aligned spheroidal inhomogeneities (solid grains, vugs and micro-cracks) has been solved using
the self-consistent scheme known as effective medium approximation (EMA). Since a solution of so-called one-particle
problem is a base for each self-consistent method, we solved this problem as a first step for spheroidal inhomogeneity in
a transversely isotropic medium. In contrast to the known solution of this problem by Lin and Mura we obtained the
expressions for the strain field inside inclusion in the explicit form (without quadratures). The obtained solution was
used then in the symmetric variant of the EMA where each component of the system was considered as spheroid with
its own aspect ratio. This approach was applied to simulate the properties of the rocks containing isolated pores and
micro-cracks. For connected fluid-filled pores we used the anisotropic variant of the Gassmann theory. The results of
the calculations, obtained for the effective elastic moduli, have been compared with the experimental data and theoret-
ical simulations of the other authors. Unlike many other rock mechanics theories, EMA approximation gives correct
elastic moduli values even in the nondilute concentration of inhomogeneities. The comparison of the experimental data
for oriented crack system with the EMA predictions indicates their good correspondence.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Natural rocks containing inhomogeneities (for example, cracks, cavities or inclusions with other
properties) can be considered as micro-inhomogeneous materials. The micro-structure of such materials
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is random because of the randomness of the shapes and sizes of the inhomogeneities as well as their distri-
bution in space.
As a result, various physical fields in such materials are also random and the central problem of micro-

mechanics is evaluation of the mean values of these fields and relation between them (a homogenization
problem). If this problem is solved and such relations are constructed, it is possible to replace the given
inhomogeneous medium by a homogeneous one with the effective overall properties of the original mate-
rial. The responses of such a homogeneous medium and of the original medium to the external loading are
macroscopically equivalent.
When the volume concentration (or density) of inhomogeneities is small (so that they do not interact) the

homogenization problem is reduced to the problem of an isolated inclusion embedded into a homogeneous
matrix. For homogeneous ellipsoidal inclusions and elliptical cracks this problem can be solved exactly,
and, therefore, the exact solution of the homogenization problem can be obtained in these cases, see
Nur (1971), Anderson et al. (1974), Hudson (1980, 1981, 1990), Peacock and Hudson (1990), Sayers and
Kachanov (1991), Kachanov (1992), Thomsen (1995), Cheng (1993) and Xu (1998). For higher inclusion
volume concentration, one has to take into account the interaction between them (a many-particle prob-
lem), and the homogenization problem becomes much more complex. The many-particle problem for a
medium with a random set of inhomogeneities cannot be solved exactly, and only various approximations
are available.
In theoretical physics, there is a group of methods known as self-consistent methods, which allow con-

structing approximate solutions of the many-particle problem. Using physically reasonable hypotheses
these methods reduce many-particle problem to the one-particle one. The self-consistent schemes widely
used in geomechanics are various versions of the so-called effective medium approximation (EMA)
(O�Connell and Budiansky, 1974; Budiansky and O�Connell, 1976; Korringa et al., 1979; Berryman,
1980, 1992; Berge et al., 1993). It is known that this method satisfies the Hashin–Shtrikman bounds and
it is realizable (Milton, 1985). The differential scheme (DEM) developed by Norris (1985), Sheng (1991),
Berryman (1992), Hornby et al. (1994) and Jacobsen et al. (2000) may be also considered as a version of
EMA.
The EMA is based on the following main hypotheses: every inhomogeneity (inclusion) in a micro-inho-

mogeneous material behaves as an isolated one embedded in a homogeneous medium with effective prop-
erties of the original inhomogeneous material. The field action on this inclusion coincides with the external
field applied to the material. It is well known that the solution of the homogenization problem based on
these hypotheses often does not correspond to experimental data (especially for materials with big contrast
in component properties). Nevertheless, for natural rocks this model is preferable in the broad range of
cases because of the concept of the critical porosity (Mavko et al., 1998). According to this concept, there
is a critical porosity for natural rocks such that when it is exceeded, the rock formation is no longer a con-
nected body (the shear modulus turns to zero). The EMA inability to describe properly the dependence of
rock electroconductivity on the total porosity is often referred to its character drawback. But under the
appropriate choice of the pores and solid grains geometry, the EMA can also be successfully used for
the rock electroconductivity description (Markov et al., 2003).
Based on the EMA, we present the determination of elastic parameters (elastic moduli and wave veloc-

ities) of inhomogeneous natural rocks having macroscopically hexagonal symmetry (transversely isotropic).
This kind of anisotropy can be caused by aligned spheroidal inclusions (voids or cracks). In this case, the
EMA application requires solution of the elastic problem for the isolated spheroidal inhomogeneity in the
transversely isotropic medium. With the help of Eshelby�s tensor presentation suggested by Vaculenko
(1998) and the special tensor basis (Kunin, 1983; Kanaun and Levin, 1994) we have found the solution
of this one-particle problem in the explicit form without numerical integration. (Previously this solution
was given only in quadratures form by Lin and Mura (1973).) Then we used the obtained solution in
the EMA to calculate the effective elastic moduli and velocities of the elastic wave propagation in the
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medium containing such inhomogeneities. During these calculations we used the ‘‘symmetric’’ with respect
to the components variant of the EMA (Berryman, 1992) for materials that contain inclusions with contrast
properties. Each of the components is modeled by spheroids with their own aspect ratios. Note that the
obtained solution of the homogenization problem is different from both the solution of Hoenig (1979)
and Laws and Brockenbrouth (1987) in which thin crack-like inclusions were only considered and the solu-
tion by Hornby et al. (1994). In the last publication the combination of the EMA and the DEM was used
for the prediction of the effective elastic properties of anisotropic shales. The shapes of the solid particles
and pores in Hornby et al. paper were assumed to be the same.
In the present paper we consider materials with components that can be different in shapes. The calcu-

lations are performed for the materials containing oblate spheroids (pores and cracks) as well as prolate
spheroids that can model channels in heterogeneous rocks. The existence of such channels is typical for
materials with secondary porosity.
The elastic characteristics estimation was performed by the EMA for rocks containing isolated saturated

pores without fluid overflow. In the case of connected pore system the effective elastic parameters were ini-
tially calculated for dry rocks applying the EMA, and then the hydrodynamic mechanism was taken into
account using Gassmann�s relations for the elastic moduli of dry and fluid-filled pores (Gassmann, 1951;
Brown and Korringa, 1975). These relations are represented in the special tensor basis that allows writing
them in the compact and convenient for application form.
The structure of the paper is as follows. The solution of the one-particle problem is given in Section 2.

The equations of the EMA for transversely isotropic medium are presented in Section 3. The rest of the
paper is dedicated to results of the calculations, their analysis and comparison with the results of the other
authors and available experimental data.
2. Single spheroidal inclusion in transversely isotropic medium

Let us consider an unbounded elastic medium with the tensor of elastic moduli C 0, containing a region V
with other elastic properties C. The equation of static elasticity in displacements for a medium with inho-
mogeneity is written in the form:
ojCijklðxÞolukðxÞ ¼ 0; oi � o=oxi; ð1Þ

CijklðxÞ ¼ C0ijkl þ C1ijklV ðxÞ; C1ijkl ¼ Cijkl � C0ijkl;
where V(x) is the characteristic function of the region V occupied by inclusion. It was shown by Kunin
(1983) that the strain field eij(x) = o(iuj)(x) in the medium with inhomogeneity (the parenthesis symbol ()
stands for the symmetrization procedure over the corresponding indexes) satisfies the integral equation
which is completely equivalent to Eq. (1):
eijðxÞ ¼ e0ijðxÞ þ
Z
V
P ijklðx� x0ÞC1klmnemnðx0Þdx0; ð2Þ

P ijklðxÞ ¼
o
2GikðxÞ
oxjoxl

����
ðijÞðklÞ

:

Here e0(x) is the external strain field that would be in the medium without inhomogeneity, Gik(x) is the
Green function of operator ojC

0
ijklol for the unbounded medium.

Let the inclusion occupy an ellipsoidal domain V with semiaxes a1, a2, a3. In this case the solution of
Eq. (2) can be obtained in the closed form. This fact is based on the remarkable Eshelby�s theorem
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(Eshelby, 1957): if the external field e0ij is homogeneous in the domain V, then the strain field eij inside V is
also homogeneous and it is determined by the expression
eij ¼ Aijkle
0
kl; Aijkl ¼ ðI ijkl þ P ijmnC

1
mnklÞ

�1
; ð3Þ
where Iijkl = di(kdl)j is the unit tensor and P is the tensor with constant components
P ijkl ¼ �
Z
V
P ijklðx� x0Þdx0 ð4Þ
that depend the shape and orientation of ellipsoid. Note that the tensor P can be expressed via the known
Eshelby�s tensor S as
P ijkl ¼ SijmnðC0mnklÞ
�1
: ð5Þ
Let the ‘‘host’’ medium be transversely isotropic and the inclusion be a spheroid with the semiaxes
a1 = a2 = a, a3 and symmetry axis coincident with the medium symmetry axis. This problem was analyzed
by Lin and Mura (1973) where the authors have provided the solution in a quadrature form. We found the
solution in a sufficiently compact form without numerical integration. To obtain it we used a special tensor
basis introduced by Kanaun and Levin (1994) for a transversely isotropic medium and a specific presenta-
tion of tensor P proposed by Vaculenko (1998).
Let us introduce a tensor basis T with elements, which are defined by the unit vector of symmetry axis m

and the orthogonal projector on the isotropy plane hij
T 1ijkl ¼ hikhljjðklÞ; T 2ijkl ¼ hijhkl; T 3ijkl ¼ hijmkml;

T 4ijkl ¼ hklmimj; T 5ijkl ¼ hikmlmjjðijÞðklÞ; T 6ijkl ¼ mimjmkml;
ð6Þ
where hij = dij�mimj, dij is Kronecker symbol. This tensor basis simplifies operations with fourth-rank ten-
sors for a transversely isotropic medium due to its properties presented in Appendix A.
Tensor P in (3) can be represented in T-basis in the form
P ¼ P 1T
2 þ P 2 T1 � 1

2
T2

� �
þ P 3ðT3 þ T4Þ þ P 5T

5 þ P 6T
6; ð7Þ

P 1 ¼
p
2

X3
l¼1

ðbl � clalÞJ
ðlÞ
1 ; P 2 ¼

p
2

X3
l¼1

ð2bl � clalÞJ
ðlÞ
1 ;

P 3 ¼ � p
2

X3
l¼1

clðJ ðlÞ
1 � n2clJ

ðlÞ
2 Þ;

P 5 ¼ p
X3
l¼1

ð2bl � clalÞn2J
ðlÞ
2 � clðJ ðlÞ

1 � n2clJ
ðlÞ
2 Þ þ dlJ

ðlÞ
1

h i
;

P 6 ¼ 2p
X3
l¼1

dlJ
ðlÞ
2 :

ð8Þ
Here the coefficients al, bl, cl, dl, cl (l = 1,2,3) are defined by the matrix elastic moduli and the parameters
J ðlÞ
1 , J

ðlÞ
2 depend on the inclusion aspect ratio n = a3/a. The explicit expressions for these quantities as well as

details of derivation of these formulas can be seen in Sevostianov et al. (this issue) and for completeness are
presented in Appendix B.
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3. The EMA model for a transversely isotropic medium

We now use the solution of the one-particle problem obtained above in the ‘‘symmetric’’ EMA model
proposed by Berryman (1980, 1992) and Norris (1985) for the material with aligned spheroidal inclusions.
We assume that material of inclusions may be transversely isotropic with the symmetry axis coincident with
the spheroid symmetry axis. Then, for the rth component we can write the expression for the tensor of elas-
tic moduli in T-basis as:
Cr ¼ 1
2
ðCr

11 þ Cr
12ÞT

2 þ 2Cr
66 T1 � 1

2
T2

� �
þ Cr

13ðT
3 þ T4Þ þ 4Cr

44T
5 þ Cr

33T
6: ð9Þ
We used here the common Voigt�s notation for the five independent elastic moduli of the transversely
isotropic medium: Cr

11, C
r
12, C

r
66 ¼ 1

2
ðCr

11 � Cr
12Þ, Cr

13, C
r
44, C

r
33 (r = 1, 2, . . ., n).

In consequence with the main hypothesis of the EMA model each component in micro-inhomogeneous
material is considered as a spheroid embedded in the homogeneous medium having the overall (effective)
properties. The external field that acts on this inclusion is equal to the average field in the region occupied
by this inclusion. This leads to the following algebraic equation for the tensor of effective elastic moduli C	

ijkl

(see Berryman (1980), Norris (1985)):
X
r

cr½ðCr
ijkl � C	

ijklÞ
�1 þ P 	ðrÞ

ijkl �
�1 ¼ 0: ð10Þ
Here cr is the volume concentration of rth component; tensor P*(r) is obtained from the expressions rep-
resented in previous Section and Appendix B in which we had to replace the elastic moduli C0 by the effec-
tive elastic moduli C*. Index r means that expressions for components of this tensor depend on the aspect
ratio of the spheroid that belongs to the rth phase. Tensor C* also has a transversely isotropic symmetry
and can be written in T-basis similar to (9):
C	 ¼ 1
2
ðC	

11 þ C	
12ÞT

2 þ 2C	
66 T1 � 1

2
T2

� �
þ C	

13ðT
3 þ T4Þ þ 4C	

44T
5 þ C	

33T
6: ð11Þ
The system of algebraic equations for these five effective elastic moduli can be obtained if we write (10) in
T-basis and then equate each component to zero in this presentation. This result is
X
r

cr
D	

r

Cr
11 þ Cr

12 � C	
11 � C	

12

Dr
þ P 	ðrÞ

6

� �
¼ 0;

X
r

cr
1

2ðCr
66 � C	

66Þ
þ P 	ðrÞ

2

� 	�1
¼ 0;

X
r

cr
D	

r

Cr
13 � C	

13

Dr
� P 	ðrÞ

3

� �
¼ 0;

X
r

cr
1

Cr
44 � C	

44

þ P 	ðrÞ
5

� 	�1
¼ 0;

X
r

cr
D	

r

Cr
33 � C	

33

Dr
þ P 	ðrÞ

1

� �
¼ 0;

ð12Þ
where
Dr ¼ ðCr
11 þ Cr

12 � C	
11 � C	

12ÞðCr
33 � C	

33Þ � 2ðCr
13 � C	

13Þ
2
;
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D	
r ¼ 2

ðCr
33 � C	

33

Dr
þ P 	ðrÞ

1

� �
Cr
11 þ Cr

12 � C	
11 � C	

12

Dr
þ P 	ðrÞ

6

� �
� Cr

13 � C	
13

Dr
þ P 	ðrÞ

3

� �2" #
:

This system of algebraic equations can be solved numerically. The results of calculations will be pre-
sented in the next section.
4. The results of calculations

Let us consider a few examples of calculations applying the described above model.

4.1. Velocity anisotropy in the media containing aligned inclusions

As a first example, let us consider a system of inclusions of two types: platelets particles with aspect ratio
1/20, their properties correspond to clays (see Mavko et al. (1998)), and quasispherical particles, which elas-
tic properties correspond to quartz sandstone. Table 1 shows the elastic waves velocities in the components.
Such a medium has anisotropy at the nonzero concentration of each component. Fig. 1 presents how the
calculated elastic wave velocities depend on angle between the system symmetry axis and the wave propa-
gation direction. The obtained result analysis shows that the effective media has considerable anisotropy;
the elastic wave�s velocities difference can exceed 10% depending on the direction of propagation.
As a second example, we consider the calculation of effective velocities in the medium containing fluid-

filled inclusions of all types: vugs, horizontally crack-like inclusions and vertical channels. The presence of
such a complicated pore system is typical, for example, for carbonate rocks. The calculations were carried
out for the medium which properties of the water-saturated limestone embedded at a depth of 2–3 km. The
data of the medium elastic properties are presented in Table 2. The concentration of inclusions of all types
came to 0.01. Vertical channels were simulated by prolate spheroids with aspect ratio a = 100, and crack-
like inclusions were modeled by oblate spheroids with aspect ratio a = 0.01. Analysis of the calculations
(Fig. 2) has shown that in this case the effective medium anisotropy is caused by the presence of crack-like
inclusions. The presence of vertical channels at the same concentration of inclusions doesn�t lead to consid-
erable anisotropy.
When the aspect ratio of the prolate spheroids exceeds 20, velocities with accuracy of more than 1% cor-

respond to the asymptotical velocity for the ideal cylindrical inclusions with a circular cross-section. To
compute the elastic characteristic for circular cylinders we apply the expressions presented in Appendix B.

4.2. Comparison of our results with the Hudson theory

As a third example, let us consider the calculation results for the solid rock, with properties correspond-
ing to the fractured limestone in conditions of natural bedding at a depth of about 2 km. We assume that
1
on input parameters used to generate Fig. 1

properties P-wave speed 3750 ms�1

S-wave speed 2000 ms�1

Density 2550 kgm�3

one P-wave speed 6050 ms�1

S-wave speed 4100 ms�1

Density 2650 kgm�3



Fig. 1. Velocity dependence on incidence angle in a shale and sandstone mixture (of P-wave (a), SH-wave (b) and SV-wave (c)).

Table 2
Parameters used to generate Figs. 2 and 3

Bulk modulus of the rock 52 GPa
Shear modulus of the rock 27 GPa
Bulk modulus of the pore fluid 2.25 GPa
Crack aspect ratio 0.01
Density 2550 kgm�3
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the pores are filled with water; the other rock parameters are shown in Table 2. The dependencies obtained
by use of the first-order terms of the Hudson theory (1980) are also presented in Fig. 3. As expected, the
obtained results analysis has shown that the Hudson theory and the EMA model are well agreed with each
other at the crack density ma3<0.1 (the crack concentration < 0.005 for aspect ratio 0.01), where m is the
number density of cracks, a is the crack radius. It is necessary to emphasize that this condition is sufficiently
strong and don�t always fulfill for real rocks. For higher crack concentration it is advisable to use self-con-
sistent methods.



Fig. 2. P-, SH- and SV-wave velocities in a transversely isotropic cracked medium containing components of all forms as functions of
incidence angle. Concentration of inclusions of all types is 0.01. The cracks are simulated by spheroids with aspect ratio 0.01, the
vertical channels are simulated by spheroids with aspect ratio 100, and the caverns are modeled by spheres.
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4.3. Comparison of the calculated P- and S-wave velocities with the experimental data for cracked media

In the paper of Rathore et al. (1994), the measurement results of elastic waves velocities in sandstone
containing artificial cracks of given geometry and orientations are represented. The measurements were car-
ried out for saturated and dry samples. The data on the porous matrix and cracks properties are shown in
Table 3.
To calculate the elastic wave velocities in cracked media, the following velocity values in dry and wet

samples without cracks have been used (Table 4).
In Fig. 4, the calculation results of angle dependencies of Vp-, Vsh-, Vsv-velocities for the matrix and

cracks parameters, corresponding to the experimental data, are shown. The comparison of the experimen-
tally measured dependencies with the predictions indicates their good correspondence. Let us note that in
this case, the system of Eq. (6) has a free parameter, aspect ratio, of the first component matrix, but its
change in the broad range didn�t influence essentially on the obtained dependencies. Fig. 3 is represented



Fig. 3. Comparison of the calculated elastic moduli. Solid lines––Hudson theory, dotted lines––EMA approximation.

Table 3
Crack, fluid and taken from the laboratory experiments of Rathore et al. (1994)

Parameter Value

Crack half-thickness 10�5 m
Crack aspect ratio 0.0036
Crack density 0.1
Fluid bulk modulus 2.16 GPa
Matrix porosity 0.346
Matrix density 1712 kgm�3

Table 4
Velocities in the saturated and dry samples

Vp (dry) 2540 ms�1

Vs (dry) 1440 ms�1

Vp (sat) 2700 ms�1

Vs (sat) 1380 ms�1
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for equal aspect ratios of the first type inclusions, corresponding to the matrix without cracks, and the sec-
ond type inclusions (cracks). For wet samples there is a more complicated situation. In this case the pres-
ence of movable fluid in pores and of hydrodynamic cross-flow initiation on the cracks bounds reduces to
considerable frequency dispersion of velocities. The most correct account of these effects is possible within
the Biot�s theory (1962), (Gurevich et al., 1998), however, the complete problem solution of elastic wave
propagation in saturated porous media with cracks is beyond the bounds of this paper.
Hudson et al. (1996, 2001) in their works have estimated the influence of hydrodynamic effects, caused by

fluid filtration from cracks to pores, on elastic wave velocities and attenuations. Therefore, let us consider
only limiting cases, high and low frequencies. Let us emphasize that in this paper we mean by high and low
frequencies the frequency value with respect to the typical global (Biot) and local (squirt) flow frequencies,



Fig. 4. Comparison of measured data (j) with the EMA model (solid curves) for a dry sample containing micro-cracks.
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at the same time the cracks dimension is smaller than the wave length. In our problem definition the EMA
model gives the results corresponding to high-frequency approximation Mavko et al. (1998) and considers
fluid inclusions as isolated. To calculate elastic module and elastic wave velocities in the low-frequency
range we have used relations obtained by Gassmann (1951) and Brown and Korringa (1975). These rela-
tions connect the elastic module of dry rock with the elastic module of fluid-saturated rock and are given
by:
SðdryÞ
ijkl ¼ SðsatÞ

ijkl þ
SðdryÞ
ijaa � S0ijaa

� 

SðdryÞ
klaa � S0klaa

� 

SðdryÞ

aabb � S0aabb

� 

þ bfl � b0ð Þ/

; ð13Þ
where SðdryÞ
ijkl is the effective elastic compliance tensor for dry rock, SðsatÞ

ijkl is the effective elastic compliance
tensor for rock saturated with pore fluid, S0ijkl is the effective elastic compliance tensor for mineral material
making up rock, bfl is the pore fluid compressibility, b0 is the mineral material compressibility, / is the
porosity.
The relations (13) in the tensorial basis T(m) are given by:
SðsatÞ ¼ SðsatÞ
1 T 2 þ SðsatÞ

2 T 1 � 1
2
T 2

� �
þ SðsatÞ

3 ðT 3 þ T 4Þ þ SðsatÞ
5 T 5 þ SðsatÞ

6 T 6;

SðsatÞ
1 ¼ SðdryÞ

1 � 1
D1

2SðdryÞ
1 þ SðdryÞ

3 � 2S01 � S03
� 
2

;

SðsatÞ
2 ¼ SðdryÞ

2 ;

SðsatÞ
3 ¼ SðdryÞ

3 � 1

D1
ð2SðdryÞ

1 þ SðdryÞ
3 � 2S01 � S03Þð2S

ðdryÞ
3 þ SðdryÞ

6 � 2S03 � S06Þ;

SðsatÞ
5 ¼ SðdryÞ

5 ;

SðsatÞ
6 ¼ SðdryÞ

6 � 1
D1

2SðdryÞ
3 þ SðdryÞ

6 � 2S03 � S06
� 
2

;

D1 ¼ 4SðdryÞ
1 þ 4SðdryÞ

3 þ SðdryÞ
6 þ /bfl � ð4S01 þ 4S03 þ S06Þð1þ /Þ;

ð14Þ



Fig. 5. Comparison of measured data (j) with the simple EMA model (solid lines) and the EMA using Gassmann and Brown &
Korringa (dotted lines) method for water saturated sample, containing micro-cracks.
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where
SðdryÞ
1 ¼ C33

2D2
;

SðdryÞ
2 ¼ 1

C11 � C12
;

SðdryÞ
3 ¼ �C13

D2
;

SðdryÞ
5 ¼ 1

C44
;

SðdryÞ
6 ¼ ðC11 þ C12Þ

D2
;

D2 ¼ 2
1

2
ðC11 þ C12ÞC33 � C213

� �
:

The results of calculations and the experimental data are represented in Fig. 5. The obtained results anal-
ysis indicates the good correspondence of the predictions to the experimental data for S-waves.
It is interesting to compare the predictions with the experimental data for P-waves. The experimental

data are between the theoretical curves calculated by using two EMA theory variants. The obtained result
is explained to that the frequency region, in which the experiments were carried out, is considerably higher
than frequency region where the Brown–Korringa theory works well. At the same time the elastic wave fre-
quency in experiments is insufficiently high to neglect the hydrodynamic effects connected with filtration. It
seems to us that using of the low-frequency variant of the theory in the frequency region corresponding to
seismic diapason is more correct.
5. Conclusions

Many geomaterials have anisotropy and are micro-inhomogeneous. The method to calculate effective
elastic parameters of micro-inhomogeneous media, represented in this paper, is based on the self-consistent
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methods ideology (the EMA model). The system of equations used in calculations is nonlinear, but its
numerical solution doesn�t cause any difficulty with the modern computer techniques application. This
model as compared with other theoretical models, using the low concentration approximation, can be ap-
plied to more high volume concentration of inclusions.
In the case of a connected fluid-filled pores system, two calculation variants have been presented. In the

low-frequency range which includes the frequency range, typical for seismic researches, it is expedient to
calculate elastic properties of dry rock and use tensorial relations by Gassmann (1951) and Brown and Kor-
ringa (1975), which connect elastic module of dry and saturated porous media. In the frequency range of 1
MHz, typical for laboratory researches, it is advisable to apply direct solution of the Eq. (3) for saturated
media, which fluid component shear module tends to zero. To develop the theory of effective media, con-
taining connected pores system with movable fluid, in all frequency range it is advisable to use the theory of
the mechanics of saturated porous media.
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Appendix A. Properties of tensorial basis T

The convenience of the tensorial basis introduced by Eq. (4) is in the following properties:

1. The product of the T-basis over two indices belongs to the same basis.
2. If a certain tensor H is expressed in the T-basis.
H ¼ H 1T
2 þ H 2 T1 � 1

2
T2

� �
þ H 3T

3 þ H 4T
4 þ H 5T

5 þ H 6T
6; ðA:1Þ
the inverse tensor H�1 is determined by the expression
H�1 ¼ H 6

2D
T 2 þ 1

H 2

T1 � 1
2
T2

� �
� H 3

D
T3 � H 4

D
T4 þ 4

H 5

T5 þ 2H 1

D
T6; ðA:2Þ
where D = 2(H1H6�H3H4).
3. If two tensors H and F are given in the T-basis, then the contraction of these tensors over two indices is
HijmnF mnkl ¼ ð2H 1F 1 þ H 3F 4ÞT 2ijkl þ H 2F 2 T 1ijkl �
1

2
T 2ijkl

� �
þ ð2H 1F 3 þ H 3F 6ÞT 3ijkl

þ ð2H 4F 1 þ H 6F 4ÞT 4ijkl þ
1

2
H 5F 5T 5ijkl þ ðH 6F 6 þ 2H 4F 3ÞT 6ijkl: ðA:3Þ
Appendix B. One-particle problem for a spheroid in the transversely isotropic media

The tensor P introduced in Eq. (4) is the basic quantity in the solution of the one-particle problem for a
spheroidal inclusion embedded in the transversely isotropic medium with tensor of elastic module L. To
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obtain the explicit expressions for the components of this tensor it is necessary to calculate an integral
expression over the region v occupied by the spheroidal inclusion
P ijkl ¼
Z
v

o2

oxjoxl
Gikðx� x0Þdx0

����
ðijÞðklÞ

; ðB:1Þ
where G(x) is the Green�s function for a generally anisotropic unbounded medium and the symbol paren-
thesis () stands for the symmetrization over the corresponding indices. In the arbitrary anisotropic medium,
the Green�s function can be represented in the form
GikðxÞ ¼
1

r
Cikðh;uÞ; ðB:2Þ
where (r, h, u) is the spherical coordinate system.
Applying the approach developed by Vaculenko (1998), Eq. (B.1) can be transformed in the surface inte-

gral over a unit sphere X
P ¼ E �
Z

X
ðer � E � erÞ�1erðr	CðerÞ � CðerÞerÞdX; ðB:3Þ
where er, eh, eu are the basis vectors of the spherical coordinate system and
r	 ¼ eu

sin h
o

ou
þ eh o

oh
: ðB:4Þ
In Eq. (B.3), the second rank tensor E depends on the inclusion form and it is defined by the following
expression
Eij ¼
1

a21
e1i e

1
j þ

1

a22
e2i e

2
j þ

1

a23
e3i e

3
j ; ðB:5Þ
where e1, e2, e3 are the unit vectors of ellipsoid symmetry axes, and a1, a2, a3 are the ellipsoid semi-axes.
Taking into account that the medium is transversely isotropic, it is convenient to find the integral (B.3) in

the system of cylindrical coordinates. For this purpose, tensors Cand E should be rewritten as the functions
of q, u, z coordinates.
Tensor C(h) and its components for the elastic field in a transversely isotropic medium have been ob-

tained explicitly (Kröner, 1953) and the result was corrected by Yoo (1974). Thus,
Cikðh;uÞ ¼ CuuðhÞeu
i e

u
k þ CqqðhÞeq

i e
q
k þ CqzðhÞðeq

i e
z
k þ ezi e

q
k Þ þ CzzðhÞezi ezk; ðB:6Þ

CuuðhÞ ¼
X3
l¼1

ðbl � alclÞsin2h � alcos2h

sin2h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
clsin

2h þ cos2h
q ; CqqðhÞ ¼

X3
l¼1

blsin
2h þ alcos2h

sin2h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
clsin

2h þ cos2h
q ;

CqzðhÞ ¼
X3
l¼1

cl cos h

sin h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
clsin

2h þ cos2h
q ; CzzðhÞ ¼

X3
l¼1

dlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
clsin

2h þ cos2h
q ;

ðB:7:1–4Þ
where coefficients al, bl, cl, dl and c1, c2, c3 depend on the components of the tensor of the elastic moduli and
these coefficients can be represented using Voight�s matrix
al ¼
1

fl
½ðC66 � C11ÞðC33 � clC44Þ þ ðC13 þ C44Þ�; ðB:8Þ
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bl ¼
1

fl
½ðC44 � clC11ÞðC33 � clC44Þ þ clðC13 þ C44Þ�; ðB:9Þ

cl ¼
1

fl
ðC13 þ C44ÞðC44 � clC66Þ; ðB:10Þ

dl ¼
1

fl
ðC44 � clC11ÞðC44 � clC66Þ; ðB:11Þ

fl ¼ 4pC11C44C66
Y3
j¼1
ðj 6¼lÞ

ðcj � clÞ; ðB:12Þ

c1 ¼
C44
C66

; ðB:13Þ
where c2, c3 are the roots of the quadratic equation,
C11C44c2 þ ððC13Þ2 þ 2C13C44 � C11C33Þc þ C33C44 ¼ 0: ðB:14Þ

In formulas (B.6), the basis vectors of cylindrical coordinates system eq, eu, ez are
eq ¼
cosu

sinu

0

0
B@

1
CA; eu ¼

� sinu

cosu

0

0
B@

1
CA; ez ¼

0

0

1

0
B@

1
CA: ðB:15Þ
Using the relationships between the basis vectors for spherical and cylindrical coordinate systems
er ¼ eq sin h þ ez cos h; eh ¼ eq cos h � ez sin h; ðB:16Þ

one can rewrite the operator $* in the form
r	 ¼ eq

sin h
o

ou
þ ðeq cos h � ez sin hÞ o

oh
: ðB:17Þ
Assuming that the inclusion is a spheroid (a1 = a2 = a, a3) with semi-axis a3 parallel to the x3-axis, we
obtain
Eij ¼
1

a2
ðhij þ n2ezi e

z
jÞ; ðB:18Þ

er � E � er ¼ 1

a2
ðsin2h þ n2cos2hÞ; ðB:19Þ
where hij ¼ dij � ezi e
z
j is the orthogonal projector on the isotropy plane, and n is the aspect ratio.

Expressions (B.5)–(B.19) allow separate integration over the angles / and h in the Eq. (B.3). Taking into
account that
Z 2p

0

eu
i e

u
j du ¼

Z 2p

0

eq
i e

q
j du ¼ phij; ðB:20Þ

Z 2p

0

eq
i e

q
j e

q
k e

q
l du ¼ p

4
ðhijhkl þ hikhlj þ hilhkjÞ; ðB:21Þ
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Z 2p

0

eq
i e

q
j e

u
k e

u
l du ¼ p

4
ð3hijhkl � hikhlj � hilhkjÞ ðB:22Þ
we obtain after the u-integration and applying the T-basis (Appendix A)
P ijkl ¼
X3
l¼1

Z p

0

P ðlÞ
ijklðhÞ sin hdh; ðB:23Þ
where
P ðlÞ
ijklðhÞ ¼ � p

2Dl
ðbl � clalÞclsin2hT 2ijkl þ ð2bl � clalÞalsin2h T 1ijkl �

1

2
T 2ijkl

� ��
þclclðsin2h � n2cos2hÞðT 3ijkl þ T 4ijklÞ þ ð2n2ð2bl � clalÞcos2h

�2clclðsin2h � n2cos2hÞ þ 2dlclsin
2hÞT 5ijkl þ 4dln

2cos2hT 6ijkl
o
; ðB:24Þ

Dl ¼ ðclsin2h þ cos2hÞ3=2ðsin2h þ n2cos2hÞ: ðB:25Þ

Finally, the integration in (B.23) over the angle leads to formulas (7) and (8) in the text, in which
J ðlÞ
1 ¼ cl

Z 1

�1

ð1� u2Þdu
½1þ ðn2 � 1Þu2�½cl þ ð1� clÞu2�

3=2
¼ 2k2l 1� n2clkl ln

kl þ 1
kl � 1

� �� 	
; ðB:26Þ

J ðlÞ
2 ¼

Z 1

�1

u2 du

½1þ ðn2 � 1Þu2�½cl þ ð1� clÞu2�
3=2

¼ 2k2l
1

2
kl ln

kl þ 1
kl � 1

� �
� 1

� 	
; ðB:27Þ

kl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1� cln
2

s
: ðB:28Þ
The components of the tensor P for cylindrical inclusions are:
P ijkl ¼ � 1

4C011
T 2ijkl þ� 1

4

1

C011
� 1

C066

 !
T 1ijkl �

1

2
T 2ijkl

� �
� 1

2C044
T 5ijkl: ðB:29Þ
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